skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hidding, Martijn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. A wealth of information on multiloop string amplitudes is encoded in fermionic two-point functions known as Szegö kernels. Here we show that cyclic products of any number of Szegö kernels on a Riemann surface of arbitrary genus may be decomposed into linear combinations of modular tensors on moduli space that carry all the dependence on the spin structure δ . The δ -independent coefficients in these combinations carry all the dependence on the marked points and are composed of the integration kernels of higher-genus polylogarithms. We determine the antiholomorphic moduli derivatives of the δ -dependent modular tensors. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> The summation over spin structures, which is required to implement the GSO projection in the RNS formulation of superstring theories, often presents a significant impediment to the explicit evaluation of superstring amplitudes. In this paper we discover that, for Riemann surfaces of genus two and even spin structures, a collection of novel identities leads to a dramatic simplification of the spin structure sum. Explicit formulas for an arbitrary number of vertex points are obtained in two steps. First, we show that the spin structure dependence of a cyclic product of Szegö kernels (i.e. Dirac propagators for worldsheet fermions) may be reduced to the spin structure dependence of the four-point function. Of particular importance are certaintrilinear relationsthat we shall define and prove. In a second step, the known expressions for the genus-two even spin structure measure are used to perform the remaining spin structure sums. The dependence of the spin summand on the vertex points is reduced to simple building blocks that can already be identified from the two-point function. The hyper-elliptic formulation of genus-two Riemann surfaces is used to derive these results, and its SL(2,ℂ) covariance is employed to organize the calculations and the structure of the final formulas. The translation of these results into the language of Riemannϑ-functions, and applications to the evaluation of higher-point string amplitudes, are relegated to subsequent companion papers. 
    more » « less